1408/312 PHYSICS TECHNIQUES June/July 2010 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL SCIENCE LABORATORY TECHNOLOGY CRAFT

PHYSICS TECHNIQUES

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet
Mathematical tables/calculator
Take g = 9 8m/s²
Density of water = 1000 kg m³

This paper consists of TWO sections; A and B.

Answer ALL the questions in section A and any TWO questions from section B.

Each question in section A carries 4 marks while each question in section B carries 20 marks.

This paper consists of 5 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2010 The Kenya National Examinations Council

Turn over

SECTION A (60 marks)

Answer ALL the questions in this section.

- (a) The atmospheric pressure was recorded as 750mm Hg. Determine this pressure when measured in Nm⁻². (Density of mercury is 13600 Kgm⁻³, acceleration due to gravity is 9.8 NKg⁻¹). (2 marks)
 - (b) State the effects of increase in temperature on resistance for the following materials:
 - (i) metal; (1 mark) (ii) semi conductors. (1 mark)
- A solid of relative density 1.2 and a volume of 5cm³ is completely immersed in water.

Determine:

- (a) weight of solid in air, (2 marks)
- (b) upthrust on the solid. (2 marks)
 (Density of water is 1000 kg m⁻⁵)
- (a) Define the following terms as used in light waves:
 - (i) diffraction; (I mark) (ii) refraction. (I mark)
 - (b) Sketch a diagram that demonstrates the diffraction phenomenon. (2 marks)
- A convex mirror of focal length 25cm produces an image on its axis 8cm away from the mirror.
 Determine:
 - (a) the position of object; (3 marks)
 - (b) magnification. (1 mark)
- A cell supplies a current of 0.8A through a 1.6Ω resistor and a current of 0.3A through a 10Ω resistor. Calculate the internal resistance of the cell.
- A virtual image of 4cm is formed using a convex lens of focal length 20cm. If the size of object is 1cm, determine the position of object. (4 marks)
- Determine the time it takes a 240V, 1200W electric immersion heater to raise the temperature of 360 litres of water in a well lagged copper tank of mass 12 Kg from 15°C to 40°C.
 (Specific heat capacity of water and copper are 4200 JKg⁻¹K⁻¹ and 400 JKg⁻¹K⁻¹ respectively, density of water = 1000 Kgm⁻³).

8.	With	the aid of a diagram, describe "divided touch" method of magnetizing an iron	bar.		
			(4 marks)		
9.	Diffe	rentiate the three states of matter in terms of the motion of their molecules.	(4 marks)		
10.	Diffe	rentiate between zener and photodiodes in terms of their operations.	(4 marks)		
11.	Desc	ribe the control of wavelength and intensity of X-rays during production in an	X-ray tube. (4 marks)		
12.	The angle of incidence of a ray of light in air is 60°. Determine the angle of refrac				
		rial whose critical angle is 45.0°.	(4 marks)		
13.	(a)	State the function of a fuse.	(1 mark)		
	(b)	State the present international convention colours of the three wires for a th	ree		
		core-flexible cable with lead insulation.	(3 marks)		
14.	(a)	State the effect of magnetic field on the following radio active emissions:			
		(i) gamma rays;	(1 mark)		
		(ii) alpha particles;	(1 mark)		
		(iii) beta particles.	(1 mark)		
	(b)	State the most ionizing (emission) radiation.	(1 mark)		
15.	State	four basic applications of an electroscope.	(4 marks)		
		0			
		SECTION B: (40 marks)			
		Answer any TWO questions from this section.			
16.	(a)	Describe the application of the following in a Geiger muller tube:			
		(i) mica window;	(2 marks)		
		(ii) aluminium tube with wire at the centre.	(3 marks)		
	(b)	(i) Draw a typical decay curve on a graph of activity (counts per secon			
		time for a radio active element.	(2 marks)		
		(ii) Indicate clearly at least three half-life intervals on the graph in b(i)			
			(3 marks)		

	(c)	Describe the term magnetic saturation.	(3 marks)		
	(d)	Describe the electrical method of demagnetization.	(4 marks)		
	(e)	Sketch a circuit diagram that can be used to achieve full wave rectificatio diodes.	n using two (3 marks)		
17.	(a)	The velocity of light in water is 2.2 x 10 ⁸ m/s, while in glass medium velotio be 2.0 x 10 ⁸ m/s. Calculate the:	ocity is found		
		(i) refractive index for light passing from water to glass;	(4 marks)		
		 (ii) angle of incidence in water which would produce an angle of refra glass. 	ction of 30° in (3 marks)		
	(b)	Show, using a ray diagram, the advantage of a convex driving mirror over mirror.	a plane (7 marks)		
	(c)	A beaker contains 300 grams of water at 21°C, 3.5 grams of ice at 0°C is water which is stirred until the ice is completely melted. Determine the:	added to the		
		(i) amount of heat needed to melt the ice;	(2 marks)		
		(ii) the lowest temperature of the mixture assuming that no heat enters	and become the		
		system and the heat capacity of beaker is negligible.	(4 marks)		
8.	(a)	State the Archimedes principle.	(2 marks)		
	(b)	A solid of mass 2kg weighs 14 newtons when wholly submerged in water. If the density of water is 1000 kg m ⁻³ . Determine the:			
		(i) upthrust on the solid;	(3 marks)		
		(ii) volume of the solid;	(3 marks)		
		(iii) relative density of solid.	(2 marks)		
	(c)	(i) You are provided with three capacitors $C_1 = I\mu F$, $C_2 = 2\mu F$, and C_3 Sketch a circuit diagram for the three capacitors when only:	= 3μF.		
		I. C ₁ is parallel to C ₂ ;	(I mark)		
		II. C ₃ is parallel to C ₃ .	(1 mark)		
		(ii) Determine the resultant capacitance in c(i) I and c(i) II above.	(8 marks)		

(c) Describe the term magnetic saturation.

 (a) The figure below shows a correctly biased circuit which can be used to determine voltage characteristics of a transistor.

- (i) Indicate the polarities of A and B for the 12 volts supply. (1 mark)
- (ii) Name the transistor in the circuit. (1 mark)
- (iii) State the relationship between potential difference across R_e and V_o . (1 mark)
- (iv) Sketch the resulting graph of output voltage (Vo) against input voltage (Vi).

 (3 marks)
- (v) Explain from the sketch graph how a transistor behaves as a switch.

 (3 marks)
- (vi) Indicate on the graph the sections when the switch is "on" and when it is "off".(2 marks)
- (b) Explain the use of the following parts in a cathode ray-tube:
 - (i) grid control; (2 marks)
 - (ii) vacuum; (2 marks)
 - (iii) anode. (2 marks)
- (c) State the advantage of solid state devices over vacuum tubes. (3 marks)